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We obtain the energy band spectra, eigenfunctions, and quantum Poincaré sections of a free
particle moving in a two-dimensional channel bounded by a periodically varying (ripple) wall and
a flat wall. Classical Poincaré sections show a generic transition from regular to chaotic motion as
the size of the ripple is increased. The energy band structure is obtained for two representative
geometries corresponding to a wide and a narrow channel. The comparison of numerical results
with the level-splitting predictions of low-order quantum degenerate perturbation theory elucidate
some aspects of the classical-quantum correspondence. For larger ripple amplitudes the conduction
bands for narrow channels become flat and nearly equidistant at low energies. Quantum-classical
correspondence is discussed with the aid of quantum Poincaré (Husimi) plots.

PACS number(s): 05.45.+b, 73.20.Dx, 03.65.—w

I. INTRODUCTION

Investigations on the classical and quantum mechan-
ics of particles in billiards have been very fruitful from
the academic as well as from the technological stand-
point. On one hand, billiards such as the Buminovich
and Sinai billiards have served as paradigms for studying
general dynamical features of deterministic chaotic sys-
tems [1-3]. The quantum and semiclassical treatments
of these and other billiards have also contributed greatly
to the understanding of the quantum manifestations of
classical chaos [4,5] and quantum transport [6]. On the
other hand, billiards, open and closed, can also be real-
ized experimentally in mesoscopic ballistic systems [7-9],
in magnetic billiards [10], and in microwave cavities [11].

Two-dimensional electron waveguides or channels also
form billiards in the ballistic regime. Kouwenhoven et al.
fabricated such a system with a sequence of 15 quantum
dots [12], yielding a rectangular sawtooth wall that varies
periodically between two values. Quantum mechanical
ballistic calculations have explained some transport and
magnetotransport properties of this system [13]. Profiles
of this and other shapes may be fabricated in mesoscopic
systems using submicrometer lithography or by the ap-
propriate application of gate voltages [14]. They may
also be realized as films whose thickness is a periodic
function of the coordinates or as an inversion layer with
a periodically modulated surface [15].

Classical ballistic transport quantities have been calcu-
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lated recently for a finite rippled sinusoidal channel [16].
The contribution of chaotic and regular motion to trans-
port was identified explaining the dynamical origin of
certain transport properties. Quantum mechanical cal-
culations for the infinitely long rippled channel have been
carried out numerically [13] and analytically in the weak
binding approximation [17]. However, these investiga-
tions did not make any connection or identification with
the underlying regular and chaotic dynamics of the clas-
sical model.

The energy spectrum for the quantum ripple channel
has band structure. The band structure is dependent
on the parameters of the channel; consequently, one may
study the correlation between level repulsion and the dy-
namical features of the classical system. Moreover, using
the Bloch momentum as a tunable parameter, the level
statistics can be calculated to further characterize the
system and to check the universal predictions of quantum
chaos based on level spacing properties [18,19]. Such an
analysis was carried out recently [20] for a simple real Si
crystal, where the electron can be viewed as a particle
in a periodic billiard structure with soft walls (muffin-tin
approximation).

In this paper we attempt to relate features in the band
structure and energy eigenstates for the quantum ripple
channel to the underlying resonance structure and chaos
in the classical ripple channel. In Sec. II we present
Poincaré plots of the classical channel for two distinct
geometries: a narrow and a wide channel. We shall see
the various types of dynamics resulting from the varia-
tion of the ripple amplitude. In Sec. III we solve the sta-
tionary Schrédinger equation to obtain the energy-band
structure of the infinitely long rippled channel. This is
accomplished by solving the energy eigenvalue problem in
curvilinear coordinates where the boundaries of the chan-
nel are flat and the Hamiltonian acquires coordinate and
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momentum dependent terms. In Sec. IV we compare the
numerical results with the predictions of degenerate per-
turbation theory in the appropriate energy range. We
find excellent agreement in some cases and drastically
different results for other cases. In Sec. V we consider
the case of large ripples and high energies. Quantum
Poincaré plots are presented in Secs. IV and V to dis-
cuss the classical-quantum correspondence of the rippled
channel. Finally, in Sec. VI we make some concluding
remarks.

II. THE CLASSICAL RIPPLED CHANNEL

The geometry of the classical rippled channel is shown
in Fig. 1. the particle bounces back and forth between
the flat wall located at y = 0 and the periodically rippled
wall centered at y = d. The profile of the rippled wall is
given by

y =d+ acos(z), (1)

where d is the average width of the channel and a is the
amplitude of the rippled profile. Collisions by the particle
with these boundaries are assumed to be specular. A
Poincaré map of the trajectory (z,,ca,) of the particle
is straightforward to compute and is given by (ignoring
multiple collisions with the ripple)

Qni1 = Oy + 29, (2)

Tpt1 = Tn + [d + acos(z;,)][tan(on,) + tan(any1)], (3)
with

kl (4)

—p*
=T

P, = tan"?! (g-m—[d + acos(m)])

where x, is the position on the flat wall at y = 0, where
the particle hits on the nth bounce, a, is the angle the
particle trajectory makes with the vertical at z = z,,, and
tan(+,) is the slope of the tangent to the ripple wall at
the point of contact = x, after the nth bounce (cf. Fig.
1). The discrete time evolution of the Poincaré-Birkhoff
variables (z,, o) yields a Poincaré map of the dynamics
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of the particle in the ripple channel. An alternative set
of variables is the conjugate pair (z,,Pzn), where pg, =
psin(ay,) is the  component of the momentum right after
the nth collision. The magnitude of the total momentum
is p = V2E, where E is the (conserved) total kinetic
energy of the particle. In this paper, we choose mass
m = 1. Thus, if the particle in the ripple channel is
an electron, then all quantities are measured in atomic
units.

It is useful to note that different mappings (surfaces of
section) for this system have been used. Tennyson [21]
introduced this model and chose z,, and «, to describe
the position and the direction of the particle as it bounces
off the ripple surface instead of the flat surface and in
[16] the complement of this angle was used. Here our
surface of section is the flat wall y = 0 as this will prove
convenient when we connect with the quantum Poincaré
plots (described in a later section), which also measure
the coordinates relative to the flat surface.

In this paper we shall consider two distinct, represen-
tative, geometries: a narrow channel and a wide channel,
both of periodicity L = 27. For the narrow channel we
will choose a width d = 27/10. For the wide channel
we will choose a width d = 3w. The various dynami-
cal features of these two representative cases have been
studied previously in detail [16] in connection with clas-
sical ballistic transmission. In Figs. 2(a)-2(d) we show
the Poincaré surfaces of section for the narrow chan-
nel with ripple sizes a = 0, a = 27/1000, a = 27/50,
and a = 27/25, respectively. Note that in these plots
we have rescaled the z component of the momentum to
Pzn/P = sin(an). At a = 0, the trajectories are straight
lines, indicating the conservation of the z component
of momentum in addition to the energy. The situation
changes drastically when we begin to turn on the rip-
ple. A large primary resonance zone forms as soon as
a becomes different from zero. The large primary res-
onance at the center is due to the librational motion
about z = 0, the maximum width of the channel. As
the ripple amplitude increases, many of the horizontal
Kolmogorov-Arnol’d-Moser (KAM) curves disappear and
the separatrix becomes chaotic. For a = g—g, there are
still some KAM curves prohibiting the connection be-
tween the three chaotic regions observed in Fig. 2(c).

FIG. 1. Geometry of the ripple channel (in
a.u. for electrons).
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FIG. 2. Poincaré surfaces of
section for the narrow channel
with d = 22 and (a) a = 0, (b)
a= 2%, (c)a= 27, and (d)

27 (in a.u.).

a= 35

The last KAM curve breaks at around a = 27 /42 and for
larger amplitudes of ripple, e.g., a = 27 /25, the principal
first-order resonance island is surrounded by a chaotic
sea. Clearly, all orbits lying inside the central resonance
island in Figs. 2(a)-2(d) classically do not contribute to
transmission; they are localized within a unit cell in the
infinite rippled channel.

In Figs. 3(a)-3(d) we show the Poincaré surfaces of
section for the wide channel for ripple sizes a = 27 /1000,
a = 27/300, a = 2w /100, and a = 27/25. Notice that in
contrast with the narrow channel, several first-order res-
onance islands, in addition to the central one, are clearly

discernible. Notice that already for small values of the
ripple amplitude the overlap of resonances occurs, giv-
ing rise to the chaotic zones observed in Fig. 3(b). In
Figs. 3(a) and 3(b), the chaotic orbits with positive mo-
mentum do not mix with the chaotic orbits with nega-
tive momentum, except for those falling on the central
chaotic separatrix, which is very thin. This means that
most particles moving forward, chaotically or regularly,
will not change direction. Increasing the ripple amplitude
further causes more and more KAM curves to break and
finally produces global chaos, even for fairly small values
of the ripple amplitude [see Fig. 3(c)].
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FIG. 3. Poincaré surfaces of
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section for the wide channel
. _ _ 2

with d —31r and (a) az— 1055

(b) a = 25, (c) a = {55, and

(d) a = £ (in a.u.).
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III. THE QUANTUM RIPPLED CHANNEL

Let us now consider the quantum version of this sys-
tem. We wish to see how the energy eigenvalues and
eigenstates are affected by the resonances and chaos. We
will transform to a set of curvilinear coordinates and then
compute the Hamiltonian matrix for the quantum system
and obtain from it the energy spectrum and eigenstates.

A. Coordinate frames

The top and bottom profiles of the channel are given,
respectively, by

y=d+af(z), y=0, (5)

where {(z) = {(z + 27) is any periodic function of pe-
riod 27. Later we shall specialize to {(z) = cos(z). Al-
though the Hamiltonian His simply the kinetic energy,
the quantum particle experiences an effective nonuniform
potential due to the confining walls. The energy eigen-
value problem is to be solved subject to Dirichlet bound-
ary conditions (hard walls). Since the walls are not both
planar it is convenient to consider two different sets of
coordinates: Cartesian coordinates (z,y) and curvilinear
coordinates q=(gq!, ¢?).

The covariant coordinate representation of the kinetic
energy is given by [22]

" 1 _ N _
(alH|q) = 597"/ Pag'/?g** Pag™'/2, (6)
where the covariant momenta are
1
Pa = —1ih [Ba + Z(’)aln(g)] = —’ihg“l/48agl/4, (7)

Here 8,,5%; (a, B = 1,2).
and g = Det(gqg) is the metric of the coordinate system
(¢*,¢2) (they will be specified below). The Einstein sum-
mation convention of repeated indices will be assumed
throughout. Substitution of Eq. (7) into Eq. (6) gives
the kinetic energy in terms of the covariant Laplacian
Acov [23]

gap is the metric tensor

ﬁz

(qlﬁl‘PE) _?ACO\"I’E(q)

R .
=-29 1/29,9°P g'/295¥ 5 (q), (8)

Note that the wave functions ¥g(q) are normalized as
[ [va daidaru@ws(a) = 1. ©

with the completeness relation

(10)

i- [ [vidaia)al

and the integrals are taken over the entire range of coor-
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dinate values.
In Cartesian coordinates the familiar forms are ob-
tained

(z,y|H|¥E) = (z,y|1 (2 + p2)|TE)
;iz
= E¥g(v,y) = -7 (07 + 85)Us(x,y),
(11)

where the solution ¥g(z,y) must satisfy the boundary
conditions

Up(z,y=0)=0, ¥glz,y=d+aé(z)]=0. (12)

If we transform to curvilinear coordinates (¢! = u,¢? =
v) such that (see also [15,17, [24])

_ y
d + a(z)’

then the boundaries appear flat,

u=z, v

(13)

Ug(u,v) =0 at v=0,1

(14)

but the Schrédinger equation acquires coordinate and
momentum dependent terms

K2 [ B2 82 82 15)
“5(@ thige T g, +"3%)‘?E(“’”)

= Eo¥g(u,v), (15)

where
e — 1+ azvzﬁﬁ
T (d+af)?
_ —2av€,
hy = @+ ad)’ (16)
B — —avéyy 2a%v¢2
T (d+af) " (d+ad)?

Here {uEg—f; and the metric tensor and metric are, re-
spectively,

¥} 1 (:llr;ﬁu)
ga = —avéy 1+a2’02£2 ) (17)
(d+af) (d+af)?
=Detlgag] = [d + ab(w)]? = J2. (18)

J is the Jacobian of the transformation in Eq. (13).
B. Bloch states

Because the Hamiltonian is a periodic function of coor-
dinate u, the energy eigenstates will satisfy Bloch’s the-
orem and have the.form

Yg(u,v) = eik“gok(u,v), (19)

where k is the Bloch wave vector k = k(E) and the state
@k (u,v) is the Bloch function with the periodicity of the
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wall pr(u + 27m,v) = pr(u,v). The solution must satisfy > & k ok
the boundary conditions ¢k (u,0) = @r(u,1) = 0. If we ¥p(u,v) = Z Z BiinBmn (4, v), (21)
are describing a periodic flat channel of length L = 27N, m=1n=—0o0
then the allowed values of the Bloch wave vector are with
k =0, :I:%, ...,:I:KNN;U. For an infinite channel, the
Bloch wave vector takes a continuous range of values. ,3’“ (u,v)E'n"l/zg“1/4sin(m7rv)ei(k+")“, (22)
We choose the first Brillouin zone to lie in the interval mn
—3<k<3. where g=1/* = [d + aé(u)]"V/2.
We can expand the Bloch function ¢k (u, v) in a Fourier
series and write the energy eigenstate as C. Matrix representation
O p(u,v) = 7r—1/2g“1/4e“w and energy band structure
oo oo
P inu We now proceed to solve the energy eigenvalue prob-
X 2—1 ; By, sin(mmv)et™, (20) lem by diagonalizing the Hamiltonian Eq. (15) in the
mEInETe Galerkin basis 8%,
where the factor m~1/2g~1/4 arises from the orthonormal- o o
ity condition in curvil'inear coordinate.s, Eq. (9). Thus Z Z Hpnmi BE, . = E(k)BX, | (23)
the energy wave function is expanded in a complete or- R ’ ’
thonormal basis set, satisfying the boundary conditions
of the problem (i.e., a Galerkin series expansion [25]), where the matrix elements are
J
" . ﬁ2 27 1
HE s = ] Hm'n), = /0 du A dvg /2 (B5,)* AcorBym
hz 27 1 . . B
=5 du/ dv sin(mrv)e {ktnIug=1/4g g1/2geBg, sin(m/mv)ei(k+n)ug=1/4, (24)
0 0
Integration by parts yields
hz 27 1 . L,
Hkmm,n, = 5—7;/ du/ dvaa[Sin(mﬂ.v)e—z(n+k)ug—1/4]g1/zga[38ﬂ [Sin(m'ﬂ'v)ei(" +k)ug—1/4]’ (25)
o 0

which can readily be checked to be Hermitian since g%# = ¢g8*. Let us now specify £(u) = cos(u). Then, after some
algebra and calculus, we find

k w2 2 B2 (1. 3 2 13 a® 3 2 74 a® 4
Hmnm'n’ = ?(n + k) Omm! Onn’ + 2_7l' _2‘(m ™ )Jnn’ + F(m ™ )Jnn’ + g‘]nn’ Omm
ﬁ2 . m+m' mm' ' 5 2 +m' 2(m2 -+ mlz) 4
+‘2; l:(—al)(—l) m(n—{—n + Zk)Jnn: +a (—l)m m (m)Jnn: , (26)

where J,::n,, J3 ., J5.. are given by the integrals
T T AV ot o VO , ”
nn! = A [d + acos(u)]? - (d2 — a2) a /P2 — a2 +[n—n'| ], (27)
Jt = 2 du ei("“"')"sinz(u) _ T VdZ— a2 —d n—n’| d ,
I S (d+acosu)?2  (d? —a?) a \/d2_a2+|n——n|
1 42 _ a2 —d |n—n'+1| d
S5 X () (=) ()
1=2,—2 —a
and
J5 /2" g & sin(w) _im V& —a? —a\" @B e g\ Im (29)
' (d+acosu)  /d?— a2 a p .
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For the flat channel (a = 0), Eq. (26) reduces to

2 2,2
Hy it = % ((n +k)? + "‘d—:) bmm'Onns-  (30)

Diagonalization is carried out using a matrix with
columns and rows labeled by the pairs ! = (m,n) and
I’ = (m'n'). Convergence is checked as usual by increas-
ing the matrix size until no changes in the eigenvalues
occur.

Figures 4(a) and 5(a) show the band structures, in the
reduced first Brillouin zone (BZ) scheme, for the narrow
and wide flat channels, respectively. Figure 4(b) shows
the effect of a small ripple on the band structure of the
narrow channel. Note the large splittings at the cen-
ter and edges of the BZ. For convenience, the energy E
is plotted relative to E?(0) = —523(5)2 For the narrow
channel, the dispersion curves appear linear. For the flat
case and approximately for the small ripple case, the dis-
persion relation is Em(k)%ﬁz—z[(k +mn)? + (mm/d)?]. Since
(rm/d)? = 25m? for the narrow channel (d = 27), this
term dominates the dispersion relation and therefore the
k dependence looks linear. On the other hand, for the
wide channel where d = 3x, the familiar parabolic de-
pendence is clear in Fig. 5(a). When the ripple size is
small enough its effect on the potential may be consid-
ered as a perturbation on the flat channel. In Sec. IV we
shall compare our numerical results with the predictions
of first-order degenerate perturbation theory.

Figures (6) and 5(b) show the band structure as the
ripple size increases for the narrow and wide channels, re-
spectively. For the narrow channel and ripple amplitude
a>2m /50, the level repulsion is so strong at low energies
that the spectrum in this region is practically discrete
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FIG. 5. Energy band structure for the wide channel with
d=3m and (a) a =0 and (b) a = Z£ (in a.u.).

of the energy are allowed and since the slope of these
bands is approximately zero, the group velocity of the
particle wave packet is approximately zero. The classical
Poincaré map for the narrow channel corresponding to
the paiameters of Fig. 6(a) is shown in Fig. 2(c) and
that corresponding to Fig. 6(b) is shown in Fig. 2(d).
For the wide channel [Fig. 5(b)], we see that although
avoided crossings occur as the ripple size increases, the
band gaps are very few and thin. In Secs. IV and V, we

(see Fig. 6). That is, only a narrow range of values  shall discuss features of the spectra in connection with
E/B,  (a) E/B, (b) E/B)  (a) E/E}  (b)
e, —_—
. = - —
4 A&
— 3 —
/\\
2
= | ——
1.5 1.5
— —— :
-0.5 LO k 0.5 -0.5 ‘O k 0.5 -0.5 0 k 0.5 -0.5 0 k 0.5

FIG. 4. Energy band structure for the narrow channel with

d=2% and (a) a =0 and (b) a =

10

27
1000

(in a.u.).

FIG. 6. Energy band structure for the narrow channel with

d= 2% and (a) a = 2% and (b) a = £ (in a.u.).
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the classical-quantum correspondence, with the aid of
quantum Poincaré maps.

IV. DEGENERATE PERTURBATION THEORY

The Hamiltonian expressed in curvilinear coordinates
[cf. Eq. (15)] enables us to use perturbation theory to
examine the system for small ripple amplitude. If the
ripple amplitude a is small compared to the width d,
then a/d=e<1 and the Hamiltonian can be divided into
two terms

(u,v|H|u,v)€<<1z[ro(u,v) + V(u,v)], (31)
where
N A2
Ho = —— (9, +d7%5]) (32)

is the Hamiltonian of a particle moving inside a flat chan-
nel and V is the perturbation due to the small ripple.
Thus

BoWS, (k) = ES, (k)25 (), (53)

with
B0 =5 (14 ) (31)

and
v (k) = \/g e* sin(mmuv). (35)

Keeping only terms to first-order in € (we can then set
u =z and v = y/d), we get from Eq. (15)

A2 8? 2 1o}
where now £ = £(z). To zeroth order, electron states are
characterized by the continuous * momentum p, = hk
and by the discrete transversal mode m. As soon as the
perturbation is turned on, p, is no longer conserved but,
because of the periodicity of V, the continuous Bloch
vector k (not equal to p, /% anymore) is still a constant of
the motion. The unperturbed states ¥2 (k) and 2 , (k')
are degenerate if the quantum numbers k, k', m, and m’
satisfy the condition

2
2 — 1.2
k< + a2 =k +—dz_

In the scheme of the extended Brillouin zones, the dis-
persion law is periodic in k,

37)

2
%) , s=+1,42,.., (38)

Ep. (k) = E, (k +
where s denotes the sth Brillouin zone and L is the period
of £(z). Here L = 2w. Then the Bloch vectors k£ and &’
are related by k' = k + s. Substituting this into Eq. (37)
gives the following equation for k:

3277

7\2 [m2—m'?
2+ (5)) (57), (39)
Here the integers m, m’, and s are fixed and k lies in the
first Brillouin zone (—%gkg%). It is easy to see from Eq.
(39) that if m = m/, the center (k = 0) and the edges
of the Brillouin zone (k = +1) are degenerate points.
Other (accidental) degeneracies, with m'#m, lie inside
the first Brillouin zone. Note that the band spectrum
for the narrow flat channel [Fig. 4(a)] does not have ac-
cidental degeneracies in the lower part of the spectrum,
whereas for the wide flat channel [Fig. 5(a)] it does. De-
generate perturbation theory gives the amount of split-
ting (level repulsion) that may occur as the boundaries of
the channel deviate from being ideally flat. The approxi-
mation is expected to be valid when the matrix elements
of the perturbation operator V are small compared to
the electron energy (see also Ref. [17]).

In our system, degeneracies can occur between two and
more levels but by far the most common is a twofold
degeneracy as exemplified in Figs. 4(a) and 5(a). For
cases of twofold degeneracy, a straightforward calculation
using the perturbation potential Eq. (36) yields matrix
elements

(m, k|V|m' k' =k + s) = —2eE2(0)mm/ (—1)™+™ £(s)

for s=0,+1,%+2,..., (40)

where

27
i)=5y [ do t()e (41)

is the Fourier component for the periodic profile and
E%(0) = % (-3)2 is the energy of the first transverse mode
[cf. Eq. (34)]. Clearly, the diagonal matrix elements
(m = m’,s = 0) are zero if E(O) = 0, which is the case,
for example, for the trigonometric functions. In this case
the perturbed energies to first-order are simply given by

E* = E° (k)+2¢E}(0)ymm/é(s) for s=+1,42,....
(42)
If we specialize to the cosine profile £(z) = cos(x), then

£(s) = %(53,1 + 8s,-1)- (43)

Thus, first-order degenerate perturbation theory pre-
dicts, for a cosine profile, a splitting given by
AW=E+ — E~ = 2¢E(0)mm/ (8,1 + 85—1).  (44)

Scaling the energy by E?(0) in accordance with plots of
Figs. 4-6 gives the scaled splitting

AM — A

= = 2emm’, s = %1. (45)
E7(0)

The corresponding states (to zeroth order) are
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+ eikz'

S [sin(mmy/d) F sin(m/wy/d)e*]

vV2nd

Equation (43) demonstrates that the harmonic ripple
lifts the degeneracy (to first order in €) only when s =
+1, that is, only for crossings of lines (subbands) from
immediately neighboring Brillouin zones (s = +1). We
see that the splitting of levels depends on the number
of Fourier components needed to expand a given ripple
profile £(z). For example, a rectangular sawtooth profile
like the one in the experiments of Kouwenhoven et al. [12]
is expected to remove all degeneracies to first order in e.
For the common case m = m/, the probability density is

1
| (0, )| = _sinz(w)

(46)

wd d

2
sin®(z/2)
x { cos?(z/2). (47)
Note that the lower energy split state is proportional to
cos?(z/2). Let us now compare these results with nu-
merical experiments. We shall consider both narrow and
wide channels.

A. Wide channel

Let us use the parameters a = 525'—0 and d = 37 so that
€ = a/d = 0.0022. The classical phase space Poincaré
map corresponding to these values [cf. Fig. 3(b)] is al-
ready a mixed phase space. However, since the matrix el-
ements Eq. (40) are much smaller than the energy in the
range considered, quantum degenerate perturbation the-
ory (QDPT) to first order is expected to be valid. Indeed,
careful examination of the data, obtained by the numer-
ical calculations of Sec. III C, shows that level repulsion
occurs as predicted by Eq. (45). That is, the perturba-
tion potential produces a splitting given by Eq. (45) and
only for degenerate states whose k values differ by one.
As € increases to e = § = g—’g% = 0.0267, splitting be-
tween these neighboring unperturbed states is still given
correctly by Eq. (45) for the low lying states (m,m' < 5).
However, some small repulsion of levels for unperturbed
degenerate states whose k values differ by 2 can be ob-
served by close inspection of Fig. 5(b). The classical
Poincaré map for these parameters is shown in Fig. 3(d).
Thus it appears that first-order QDPT can be used to
predict correctly the level repulsion for the lower part of
the energy spectrum (low values of m,m’).

B. Narrow channel

Let us now consider the narrow channel with param-

eters a = ;25 = 0.001 and d = 37 so that € = a/d =
%% = 0.01. The classical Poincaré map for these

values [Fig. 2(b)] is dominated by KAM tori with a
pendulum-like structure. The only chaos [not percep-
tible in Fig. 2(b)] resides on a very narrow layer near
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sin(a) = 1 and on the extremely thin chaotic separatrix.
Here also QDPT to first-order is expected to apply, but
the comparison with the numerical calculations for the
band spectrum [Fig. 4(b)] shows very large discrepan-
cies. For example, at £k = 0, none of the level crossings
for the flat channel are supposed to split under first-order
QDPT since these belong to degenerate states from Bril-
louin zones, which are s=2, 4, 6,... zones apart. However,
numerical data show that the second and third levels split
and as is clearly seen in Fig. 4(b), the 19th and 20th lev-
els also split.

The reason for the discrepancy can be understood
by performing second-order QDPT [26]. The calcula-
tion now involves the solution of the secular equation
Vit — E@ 60| = 0, where Vit =500 Vin /(ES — EYP),
[n)=|m, k), and |n')=|m', k+2) are the twofold degener-
ate states and the summation is over all states not degen-
erate with |n). Since V,; is zero for |s|#1 [cf. Eq. (40)],
there are very few terms (one or two) that contribute to
the summation over I. We find a splitting of energies

given by
APD=E* — E~ = [2¢E%(0))% (48)
The scaled splitting is
_ A2 m\ 2
@ = =2e2( = f =
A ) 2¢ (d) or s=+2. (49)

The probability density of the split states is (for m = m/)

0% (2, )| = in(ﬂ;’—y)
§ { cos?(z)

sin®(z). (50)

Note that the lower (higher) energy split state has odd
(even) parity now, which is opposite the case of splitting
between degenerate unperturbed states with s = +1.

Equation (49) shows that the validity of QDPT de-
mands not only that the expansion parameter ¢ = § be
small, but also that the width of the channel be large
enough (4§ < 1). The comparison of Eq. (49) with nu-
merical data is in excellent agreement only for very small
€, e.g., € = 0.001, which is consistent with the require-
ment that the ratio A /A() = ¢(r/d)? be much less
than one. The value € = 0.001 for the narrow channel
meets this requirement and the splitting of levels at k = 0
obtained numerically is correctly predicted by Eq. (49).
For € = 0.01 [see Fig. 2(b)], where A /A = 0.25,
the probability density from the numerical experiments
(Fig. 7) agrees well with Eq. (50). However, the energy
splittings agree only in their order of magnitude and for
the low energy spectrum. Moreover, splittings between
degenerate states with s = 4 are already non-negligible.
Thus QDPT, to low orders, does not predict correctly
the energy shifts for the case of narrow channels unless
the ripple size-to-width ratio € = a/d is extremely small
to ensure convergence.

It is not completely a surprise that first-order QDPT
fails for parameter values for the classical Poincaré map
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FIG. 7. Energy eigenstates in the z-y plane for the narrow
channel with d = 21—’6, a= I%’ € = 0.01, and k£ = 0. These
correspond to energy levels (a) 2 and (b) 3 (in a.u.).

of Fig. 2(b) with a pendulumlike large resonance. The
dynamics of a classical particle in this narrow channel is
very nearly integrable and pendulumlike. Therefore the
preferred basis is the Mathieu functions, whereas QDPT
uses a plane wave basis. In fact, if we consider the per-
turbed one-dimensional Hamiltonian H = Hy + € cos(z),
the standard Rayleigh-Schrédinger perturbation is very
slowly convergent in terms of the plane wave basis [27].
Moreover, there is no energy shift to first order in €, just
as we found for the perturbation potential Eq. (36).

The configuration plots |¢g(z,y)|? (see Fig. 7) do not
appear to contain this pendulum structure. This prompts
us to examine the quantum counterpart of the classical
Poincaré maps.

Appendix A gives the details of how we can construct
quantum Poincaré plots using the well known Husimi dis-
tribution [28-30]. The quantum Poincaré plots associ-
ated with levels 1-4 (Fig. 8) and levels 19 and 20 (Fig.

-PE

-7

FIG. 8. Husimi plots for the narrow channel with d = %’,

a = 2%, and k = 0. These correspond to energy levels (a) 1,
(b) 2, (c) 3, and (d) 4 (in a.u.).
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FIG. 9. Husimi plots for the narrow channel with d = =
a = 2%, and k = 0. These correspond to energy levels (a)
19 and (b) 20 (in a.u.).

9) show that the quantum eigenstates for these levels are
pendulumlike. For example, note the sequence 1-4 in
Fig. 8. Levels 1 and 2 are libration states. Level 3 sits
on the unstable periodic orbits and level 4 is a transla-
tion (rotation) state. We found that for the wide channel,
agreement between QDTP and numerical experiments is
good even when the classical phase space is mixed, such
as in Fig. 3(b). We believe that for the wide channel,
the resonance structure is too small to be resolved by the
quantum system at low energy. It is important to note
that the classical Poincaré maps are energy independent,
whereas the quantum Poincaré maps each have different
energy (for different eigenstates). In Appendix B, a sim-
ple semiclassical analysis is presented, which reveals that
either by varying the physical size of the billiard for a
fixed energy or by varying the energy for a given size of
the billiard, we vary the degree to which the system ex-
hibits classical or quantum behavior. In particular, as
energy is increased (for fixed billiard size) the classical
features are expected to manifest themselves more and
more clearly. We shall show this in the following section.

V. LARGER RIPPLES AND HIGHER ENERGY

Let us consider first the band spectra of the narrow
channel and ripple size a = é—g [Fig. 6(a)]. Notice the al-
most flat lower bands and the approximately equal spac-
ing between them. The equidistance of spacing between
levels reminds us of simple harmonic oscillator states.
The classical Poincaré plot for these values is shown in
Fig. 2(c). The classical phase space is that of a per-
turbed pendulum with a large resonance and a chaotic
separatrix. Figure 10 shows the quantum Poincaré plots
for the first eight levels, at k = 0. Here we see that only
the first and second levels fall well within the classically
regular region. The higher levels [see Figs. 10(c)-10(h)]
lie predominantly on the largest librational orbits and on
the chaotic separatrix [see Fig. 2(c)] of the large central
resonance zone. We know that the level spacing between
energy eigenstates in the region of libration for an inte-
grable quantum pendulum decreases in the neighborhood
of the separatrix. So how do we explain the rigid, almost
constant spacing of energy levels? We believe we are see-
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ing the effect of level repulsion (see, for example, Refs.
[4, 18]) induced by the transition to chaos in the sepa-
ratrix region. Notice that energy levels that are showing
rigid structure have eigenstates that lie on or partly on
the chaotic separatrix region.

Now let us consider the narrow channel with a = 2—75'
The corresponding classical Poincaré plots and band
structures are shown in Figs. 2(d) and 6(b), respectively.
Here we wish to look at the higher energy states. The
reason is that as the energy F increases, the coarse grain-
ing of the quantum Poincaré plots becomes finer and as
argued in Appendix B, the quantum system should en-
counter more of the underlying classical structure. This
is indeed the case, as a comparison between Figs. 2(d)
and 11 shows. Note in Figs. 11(a) and 11(b) that energy
levels 452 and 455 can resolve the period-8 resonance is-
land chain surrounding the large resonance of Fig. 2(d).
The energy level 452 has maximum probability precisely

PE; 1

FIG. 10. Husimi plots for-the narrow channel with d = 10,
a= %, and k£ = 0. (a)—(h) correspond to energy levels 1-8,

respectively (in a.u.).
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on the stable (elliptic) fixed points in the chain. The en-
ergy level 455, on the contrary, has maximum probability
on the unstable (hyperbolic) regions of the chain.

The states shown in Figs. 11(c)-11(f) are also at fairly
high energy and lie in the chaotic sea of the classical Fig.
2(d). Figures 11(c) and 11(d) correspond to energy levels
403 and 418, respectively. They show strong evidence
of “scarring.” As Heller showed [5], it is not uncommon
to find eigenstates with probability strongly peaked on
the unstable periodic orbits in a chaotic sea. Although
we have not searched for unstable periodic orbits in the
chaotic sea of Fig. 2(d), we would not be surprised to
find period-4 unstable periodic orbits at the locations of
large probability in Fig. 11(d). Figures 11(e) and 11(f)
correspond to levels 1001 and 1005, respectively. Note
the finer detail that appears at these higher energy levels.

All of the Husimi plots shown so far have been for
states with k£ = 0. These states all have definite parity,
as can be seen from their symmetric distribution about
pe = 0. It is of interest also to look at states with k#0.
These states will not have definite parity and will have an
unequal distribution of probability about p, = 0. They
can also be thought to represent states with a net momen-
tum. Figures 12(a) and 12(b) show the fifth and sixth
state at k = TIE + 0.00005 for the wide channel, with

a= 2. Atk =

1 . .
300 75 these levels avoid crossing. Note

PE

Pz

-PE
PE

_pE =
PE

Pz

FIG. 11. Husimi plots for the narrow channel with d = 10 ,
a = 22, and k = 0. These correspond to energy levels (a)
452, (b) 455, (c) 403, (d) 418, (e) 1001, and (f) 1005 (in a.u.).
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FIG. 12. Husimi plots for the wide channel with d = 3,
a = :T"o, and k = % + 0.00005. These correspond to energy
levels (a) 5 and (b) 6. At k = 1/12, the fifth and sixth
unperturbed states are degenerate; see Fig. 5(a) (in a.u.).

that the fifth state has negative net momentum and the
sixth state has positive net momentum. This is consis-
tent with the signs of the slopes at £ = % +0.000 05, that
is, negative for the fifth level and positive for the sixth
level. The Husimi plots for the fifth and sixth states for
k slightly less than % are consequently reversed.

VI. CONCLUSION

We have reported here our studies of the classical and
quantum versions of a particle confined in a rippled in-
finitely long two-dimensional channel. We analyze two
representative geometries: a wide and a narrow chan-
nel. Their Poincaré surfaces of section for various ripple
amplitudes revealed the rich classical dynamics of the
system, with the typical mixed phase space of chaotic
systems.

Quantum mechanically, it was found convenient to de-
scribe the motion in a curvilinear coordinate system,
where the boundaries become flat but the Hamiltonian
acquires coordinate and momentum dependent terms.
This approach lends itself naturally to the numerical so-
lution of the eigenvalue problem as well as to a pertur-
bative treatment. For small ripples, quantum degenerate
perturbation theory gives a picture of the particle moving
inside a flat channel subject to a perturbation. The exact
numerical values of the energy eigenvalues and the QDPT
predictions were compared. For the wide channel, first-
order QDPT gave correctly which crossings would remain
degenerate and which ones repel as the perturbation was
turned on. Moreover, first-order QDPT predicted cor-
rectly the amount of splitting of the avoided crossings.
Such an agreement was found to be true (for the lower
part of the energy spectrum) even for ripple sizes for
which their corresponding classical Poincaré maps had
a mixed phase space. In contrast, the avoided crossings
and their magnitudes for the narrow channel disagreed
strongly with QDPT to first order even for very small
ripple sizes. The corresponding classical Poincaré map
was found to be that of a minimally perturbed pendulum,
the width of the chaotic separatrix practically zero, i.e.,
the map is quasiintegrable. Second-order QDPT showed
that in order for the low-order predictions (weak binding
approximation) to be valid not only must the ripple be
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small but also the width of the channel must be large
enough.

The disagreement with QDPT found for the narrow
channel, where the corresponding classical map is quasi-
integrable and the agreement for the wide channel for
which the classical maps are chaotic, might be under-
stood as follows. The lower part of the spectrum corre-
sponds to the extreme quantum limit and as the energy
is increased, the semiclassical limit is reached (see Ap-
pendix B). The classical features of the Poincaré map
of the wide channel appear to be too small to be re-
solved by the quantum system at low energy. We be-
lieve this is why we find agreement between perturbation
calculations and numerical results for the wide channel,
apart from the fact that QDPT works for rather low lev-
els only. On the other hand, the motion in the narrow
channel is dominated by a large pendulumlike structure
that can be resolved by the low-energy eigenstates. This
was confirmed by the quantum Poincaré plots. Namely,
the ground state at &k = 0 lies inside the resonance island
with maximum probability at the center, the second and
third levels fall on the separatrix, the fourth falls barely
outside the separatrix, and higher states correspond to
translational modes. We have seen that quantum pertur-
bation theory, like classical perturbaton theory, must be
used with caution. One cannot disregard the underlying
classical dynamics. Finally, the idea that higher energy
states contain information about semiclassical behavior
appears to be in agreement with the overall trend of our
quantum Poincaré plots, which resolved more and more
details and structures from the classical Poincaré plots
as energy was increased.
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APPENDIX A: HUSIMI PLOTS (28)—(30)

The Husimi distribution function [28] H(zo,P=0) can
be viewed as a quantum mechanical phase space proba-
bility density for an arbitrary quantum state |¥). It is
defined by

H(ivmpzo) = |<‘Il|1707p:v0)|2y (Al)

where the state |zo, po) is a coherent state that can be
represented in the position basis as
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w 1/4 w 2
($|m0ap:c0) == (ﬁi) exp (—ﬁ("lﬁ — .’130)

+11%(w - m0)>. (A2)

The coherent state has uncertainty o, = 4/%/2w in po-

sition and uncertainty o, = 4/Aw/2 in momentum and
the wave packet is a minimum uncertainty wave packet
020p = Fi/2. The choice of the value of the coarse grain-
ing parameter w is specified below.

Our system has two degrees of freedom and with energy
conservation we have a three-dimensional phase space.
We can obtain a quantum Poincaré surface of section
(following the approach of Ref. [29]) if we use the fact
that there is an approximate separation of variables near
the boundary. Near y = 0, the wave function ¥(z,y) can
be locally separated to first order,

E)
(2,y) ly~o = 0+ a—y‘l’(w,y) ly=0 ¥ +O(¥)* +

(A3)
We can define
) ) ei(n+k)w
= =0= an T . a2/
5(@) Ay ¥5(2,9) ly=o0 ﬁ; m(d + acosx)3/?
(A4)

(cf. Sec. III).

In the ripple channel, the coordinate z was chosen to
have 27 periodicity. Therefore, we have used the periodic
coherent state [30]

w \1/4 hd w 2
(z|zo, Pzo) = (ﬁ) lz exp (—ﬁ(m + 27l — zo)

=—00

+zgz—9 (z + 27l — :co))

The Husimi distribution near the boundary y ~ 0 is
given by

H($0,Pmo)

= ‘/dw(zo,pmolw)s(m) 2

[ e
Ao — _ exp [57(x + 27l — 20)?]
eilntk)z 2

(A6)

an 77 . Na/o
XZ m(d+acosm)3/2

In each Husimi plot, the = axis has the range —w<z<w
(one period of the ripple). For each energy eigenstate,
we chose the momentum cutoff to be pg = V2E (unless
stated otherwise), where FE is the energy of the eigen-
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state. In all Husimi plots presented here, w is chosen so
that the coarse graining is symmetrical in phase space,
as in Ref. [29]. That is, it is obtained by requiring that
2pg/op = 2m/o,. This gives w = pg/m. In our sys-
tem, quantum mechanically we cannot define sharp val-
ues for the momentum and energies simultaneously. In
cases where the probability extended beyond pg = V2E
in momentum space, the plots were extended to larger
values of p,.

APPENDIX B: SEMICLASSICAL
FLAT-CHANNEL BILLIARD

It is of interest to look at the billiard from the view-
point of semiclassical quantization. Let us consider a
rectangular billiard with length L in the z direction and
length d in the y direction. Let us assume periodic
boundary conditions in the z direction. This makes it
a flat channel. Assume that a trajectory has momentum
components p, = psin(a) and p, = pcos(a) and kinetic
energy E = p%/2m, where m is the mass of the particle,
p is the magnitude of the momentum, and « is the angle
the orbit makes with the y axis. The actions associated
with the motions in the z and y directions are

1 _ paL pL
I %fpmdm =0 T o sin(a),

prydy = pyd = pd cos(a).

J,
v 21 ™ T

(B1)

Il

It is important to note that the classical billiard is al-
lowed to have any energy and for each energy there is a
continuous range of possible motions for as small a spa-
tial scale as desired. In the surfaces of section in Figs. 2
and 3, all the trajectories, regular and chaotic, in a given
plot have the same total kinetic energy.

The quantum system is quite different and we can see
this if we quantize the action. That is, we let J, = n k
and Jy, = nyh, where n, and n, are integers (but not
both zero) and % is Planck’s constant. It is also useful
to rewrite all quantities in terms of atomic units. We let
p= po—’i— and m = mom., where ap is the Bohr radius
and m, %s the mass of the electron. Then the kinetic
energy £ = EoEp = mEB: where Eg = m—fag is twice
the ionization energy of the hydrogen atom. Also, the size
of the system can be expressed in multiples of the Bohr
radius L = Lgap and d = dpap. From the quantization
condition on the action it is easy to show that

dm2n2  w2nl
Po = 4+ -2 (B2)
L3 d3
Therefore,
27N, 4m2n2  7winl
sin(a) = ke e Y (B3)

From these equations, we see that the classical or quan-



tum nature of the system depends drastically on the
physical size of the system for a given energy. Let us
consider a small billiard such that Lo = 27 and do = =.
Then

Ny

\/12 +n§

For low energies, the angles of the allowed orbits are
quantized. Therefore, the low energy states in a chan-
nel of small physical size (of order of the hydrogen atom)

sin(a) = (B4)
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cannot distinguish the underlying complicated motions
of the classical system.

From this analysis we see that by varying the physical
size of the billiard for a given energy or by varying the
energy for a given size of the billiard, we vary the degree
to which the system exhibits a classical or quantum type
of behavior. For a billiard of a fixed size, the higher
the energy, the closer the quantum system will come to
semiclassical behavior.
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FIG. 10. Husimi plots for the narrow channel with d = "':—’(;,
a= 2% and k = 0. (a)-(h) correspond to energy levels 1-8,

respectively (in a.u.).
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FIG. 7. Energy eigenstates in the z-y plane for the narrow

channel with d = 51!%, 1%%’ ¢ = 0.01, and k = 0. These
correspond to energy levels (a) 2 and (b) 3 (in a.u.).
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FIG. 8. Husimi plots for the narrow channel with d = 31%,
a= 1?)%1 and k = 0. These correspond to energy levels (a) 1,

(b) 2, (¢) 3, and (d) 4 (in a.u.).
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FIG. 9. Husimi plots for the narrow channel with d = ‘:_”,
a = %, and k = 0. These correspond to energy levels (a)
19 and (b) 20 (in a.u.).



